GAZELLE: A Low Latency Framework for Secure Neural Network Inference

نویسندگان

  • Chiraag Juvekar
  • Vinod Vaikuntanathan
  • Anantha Chandrakasan
چکیده

The growing popularity of cloud-based machine learning raises a natural question about the privacy guarantees that can be provided in such a setting. Our work tackles this problem in the context where a client wishes to classify private images using a convolutional neural network (CNN) trained by a server. Our goal is to build efficient protocols whereby the client can acquire the classification result without revealing their input to the server, while guaranteeing the privacy of the server’s neural network. To this end, we design GAZELLE, a scalable and low-latency system for secure neural network inference, using an intricate combination of homomorphic encryption and traditional two-party computation techniques (such as garbled circuits). GAZELLE makes three contributions. First, we design the GAZELLE homomorphic encryption library which provides fast algorithms for basic homomorphic operations such as SIMD (single instruction multiple data) addition, SIMD multiplication and ciphertext permutation. Second, we implement the GAZELLE homomorphic linear algebra kernels which map neural network layers to optimized homomorphic matrix-vector multiplication and convolution routines. Third, we design optimized encryption switching protocols which seamlessly convert between homomorphic and garbled circuit encodings to enable implementation of complete neural network inference. We evaluate our protocols on benchmark neural networks trained on the MNIST and CIFAR-10 datasets and show that GAZELLE outperforms the best existing systems such as MiniONN (ACM CCS 2017) by 20× and Chameleon (Crypto Eprint 2017/1164) by 30× in online runtime. Similarly when compared with fully homomorphic approaches like CryptoNets (ICML 2016) we demonstrate three orders of magnitude faster online run-time.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of the Efficiency of the Adaptive Neuro Fuzzy Inference System (ANFIS) in the Modeling of the Ionosphere Total Electron Content Time Series Case Study: Tehran Permanent GPS Station

Global positioning system (GPS) measurements provide accurate and continuous 3-dimensional position, velocity and time data anywhere on or above the surface of the earth, anytime, and in all weather conditions. However, the predominant ranging error source for GPS signals is an ionospheric error. The ionosphere is the region of the atmosphere from about 60 km to more than 1500 km above the eart...

متن کامل

The Prediction of Forming Limit Diagram of Low Carbon Steel Sheets Using Adaptive Fuzzy Inference System Identifier

The paper deals with devising the combination of fuzzy inference systems (FIS) and neural networks called the adaptive network fuzzy inference system (ANFIS) to determine the forming limit diagram (FLD). In this paper, FLDs are determined experimentally for two grades of low carbon steel sheets using out-of-plane (dome) formability test. The effect of different parameters such as work hardening...

متن کامل

The use of wavelet - artificial neural network and adaptive neuro fuzzy inference system models to predict monthly precipitation

Precipitation forecasting due to its random nature in space and time always faced with many problems and this uncertainty reduces the validity of the forecasting model. Nowadays nonlinear networks as intelligent systems to predict such complex phenomena are widely used. One of the methods that have been considered in recent years in the fields of hydrology is use of wavelet transform as a moder...

متن کامل

Application of Artificial Neural Network and Fuzzy Inference System in Prediction of Breaking Wave Characteristics

Wave height as well as water depth at the breaking point are two basic parameters which are necessary for studying coastal processes. In this study, the application of soft computing-based methods such as artificial neural network (ANN), fuzzy inference system (FIS), adaptive neuro fuzzy inference system (ANFIS) and semi-empirical models for prediction of these parameters are investigated. Th...

متن کامل

Prediction of Thermal performance nanofluid Al2O3 by Artificial Neural Network and Adaptive Neuro-Fuzzy Inference Systemt

In recent years, the use of modeling methods that directly utilize empirical data is increasing due to the high accuracy in predicting the results of the process, rather than statistical methods. In this paper, the ability of Artificial Neural Network (ANN) and Adaptive Fuzzy-Neural Inference System (ANFIS) models in the prediction of the thermal performance of Al2O3 nanofluid that is measured ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2018  شماره 

صفحات  -

تاریخ انتشار 2018